Throughout the Middle Ages, when Europe's roads are little more than tracks, wheeled vehicles are used only for the laborious process of carting goods from place to place. When going on a journey, the able-bodied ride; the infirm are carried in a litter.
This changes in the 17th century, when there is some improvement in the paving of roads. Carriages are available for hire in the streets of London from 1605. By the second half of the century there are traffic jams. Samuel Pepys, conscious of rising in the world, considers it embarrassing in 1667 to be seen in London in a common hackney carriage which anyone can hire. The next year he happily acquires a coach and a liveried coachman of his own.
Coaches gradually become more comfortable. The most common design, developed in Germany in about 1660, is known as the berlin. The compartment for the travellers has the shape of a shallow U, with a protective roof above. There is a door on each side and the coach can seat four people, in pairs facing each other. The coachman, driving the horses, sits above the front wheels.
From 1680 glass windows keep out the weather, where previously there were only blinds. The first simple suspension, protecting the occupants against the bumps of the road, consists of leather straps on which the compartment hangs from the framework. The berlin introduces curved metal springs, which absorb the shocks more effectively.
A much lightier and racier two-wheeled vehicle, the gig, is introduced in Paris during the late 17th century. Relatively cheap, pulled by a single sprightly horse, driven by its owner and alarmingly easy to overturn, the gig is the first type of carriage to make driving an enjoyable activity.
At the other extreme from the gig, the more sedate citizen in 17th-century European capitals often uses human rather than animal power for short journeys. He hails a sedan chair and is carried, in elegant comfort behind glass windows, to his next destination. A sedan with wheels, known in Paris as a brouette, is pulled through the streets in the same way as a rickshaw in the east today.
The sedan chair soon goes out of fashion, but the carriages introduced in the 17th century evolve into the wide range of vehicles - many of them extremely beautiful - which are familiar on the streets of Europe and America until they are finally replaced in the 20th century by the car.
Among the best-known of such vehicles, featuring as they do in so many prints of the era, are the lumbering stage coach and its more effective successor, the mail coach.
Stagecoach and post chaise: 17th - 18th century
Travel between towns by public transport, in the 17th and 18th century, is a slow business. The stagecoach, a heavy and cumbersome carriage often without any form of springs, is introduced in Britain in 1640.
Up to eight of the more prosperous passengers can be packed inside a stagecoach. Second-class seats are available in a large open basket attached to the back. The least privileged travellers sit on the roof with the luggage, relying on a hand rail to prevent themselves slithering off.
This immensely unwieldly vehicle, drawn by either four or six horses, lurches along the rutted roads at an average speed of about four miles an hour. Danger from highwaymen is only one of many inconveniences on such a journey.
The noble and the rich, such as young men on their way through Europe on the Grand Tour, travel in greater comfort - in private, and in well-sprung upholstered carriages. Their favoured vehicle is the post chaise, introduced in France in the early 18th century. Its name accurately suggests a pleasant seat, and an expectation of lively new horses at each post stage during the journey.
The post chaise is designed for just two passengers seated side by side and facing forwards - with a splendid view of the landscape through large front and side windows. The view is not obscured by a coachman, since the carriage is drawn by four horses with postilions riding on two of them. Driving in such a vehicle with Boswell in 1777, Samuel Johnson declares: 'If I had no duties, and no reference to futurity, I would spend my life in driving briskly in a post chaise with a pretty woman.'
Nevertheless the average traveller's experiences are fairly dismal during the 18th century. But some slight improvement is achieved in Britain after 1784, when the stagecoach begins to be replaced by the mail coach.
George Washington and the Conestoga wagon: 1755
A significant vehicle in the development of the American west makes its first appearance in 1755 when George Washington and Edward Braddock, his English commander, need transport for their baggage train. Preparing to move an army west through the Allegheny mountains to attack the French on the Ohio river, they acquire wagons built by German settlers in the Conestoga valley in west Pennsylvania.
Pulled by four or six horses and designed at first purely for freight, these wagons have the unusual feature of a floor dipping to a low point in the centre to avoid the cargo shifting on rough ground. For the same reason there are large broad wheels to cope with ruts and mud.
The Conestoga wagon has a curving roof of wooden hoops on which a white canvas cover is stretched for protection against sun or rain. When the vehicle is adapted in the 19th century to carry settlers travelling west, this white canvas top - reminiscent of a sail - gives the Conestoga wagon its new name of prairie schooner.
One of those driving the wagons on the ill-fated expedition of 1755 is a 21-year-old teamster, Daniel Boone. Twenty years later he leads the first wagon train taking settlers along the Wilderness Road into new territory west of the Appalachians.
Bridgewater Canal:1759-1761
In 1759 a young self-taught engineer, James Brindley, is invited to visit the duke of Bridgewater. The duke is interested in improving the market for the coal from a local mine which he owns. He believes his coal will find customers if he can get it more cheaply into Manchester. He wants Brindley to build him a canal with a series of locks to get barges down to the river Irwell, about three miles from the mine.
Brindley proposes a much bolder scheme, declared by some to be impossible but accepted by the duke. He will construct a more level canal, with less need for time-wasting locks. He will carry it on an aqudeuct over the Irwell on a straight line to the heart of Manchester, ten miles away.
On 17 July 1761 the first bargeload of coal is pulled along the completed canal. Brindley's aqueduct (replaced in 1894 by the present swing aqueduct) crosses the Irwell at Barton. The strange sight of a barge floating in a gutter high up in the air becomes one of the first great tourist attractions of the Industrial Revolution. The investment in this private canal rapidly pays off. The price of the duke's coal is halved in the Manchester market.
The Bridgewater canal is the first in Britain to run its entire length independently of any river. It is the start of the country's inland waterway systerm, for which Brindley himself will construct another 300 miles of canals.
Tracks and trails in America: 1775
In 1775 the first major effort is made by British colonists to build a road west through the Appalachians, so as to enable settlement of the land won from France (but not from its Indian inhabitants) in the French and Indian War. Until this time the only way of travelling in the interior of the continent is either along rivers or on the narrow trails used by the Indians. These are adequate for horsemen and fur-trappers, but not for the wagons required if a settlement is to have a chance of becoming permanent.
One of the Indian trails, passing through the Cumberland Gap at the southwestern tip of Virginia, is known as the Warrior's Path. Daniel Boone, who has explored beyond the mountains, is commissioned in 1775 to turn this into a road.
With a party of axe-wielding companions Boone widens the trail to create the famous Wilderness Road, along which - over the next twenty-five years - some 200,000 settlers make their way into what becomes (in 1792) the state of Kentucky. Boone's wife and daughter are the first women to use the new road, in August 1775, joining him in establishing the settlement of Boonesboro on the south bank of the Kentucky river.
The Wilderness Road is the first example of American settlers blazing a trail (a blaze being a mark cut in the bark of a tree to show the way). The Sante Fe Trail and the Oregon Trail will be famous 19th-century examples. But they are preceded by the National Road.
Year of the balloon - hot air:1783
Although hydrogen has been isolated by Cavendish in the 1760s, and shown to be fourteen times lighter than air, it is not until the early 1780s that Europe's inventors are suddenly gripped with a feverish interest in using the concept to achieve a form of flight. In 1781-2 scientists in both England and Switzerland fill soap bubbles with hydrogen and see them rise rapidly to the ceiling, but similar experiments with animal bladders prove disappointing.
In the event a more elementary idea, requiring none of the achievements of recent researches, provides the breakthrough.
In November 1782 a French manufacturer of paper, Joseph Montgolfier, wonders whether the simple fact of smoke rising might not be used to carry a balloon aloft. With his brother Etienne he begins making experiments. By June 1783 they are sufficiently confident to give a public demonstration in the town of Annonay.
They light a bonfire of straw and wool under a canvas and paper balloon with a diameter of about 35 feet. An astonished crowd sees the apparatus inflate and then drift into the sky. It rises, they estimate, to more than 3000 feet, stays in the air for ten minutes, and descends gently to earth 1500 yards away.
A report is immediately sent by the representatives of the local assembly to the Academy of Sciences in Paris. The news causes a sensation. The Montgolfiers are invited to the capital to demonstrate their invention.
Etienne makes the journey on their joint behalf and constructs a balloon to be launched at Versailles on September 19 in the presence of Louis XVI. This time the flying globe or aerostatic sphere (both are contemporary phrases) carries living passengers - a sheep, a cock and a duck. The trio travel more than two miles and land unharmed, except that the cock has been kicked by the sheep. The king, watching it all through his telescope, raises the Montgolfier family into the ranks of the nobility.
The final Montgolfier triumph takes place in November. A larger balloon is constructed, 46 feet in diameter, with a metal container (to hold the burning straw) hanging on chains just inside it. A basket, suspended below, is large enough to carry two people. Rigorous tests take place in a Paris garden. The tethered balloon, now bearing a passenger (Pilâtre de Rozier), is allowed to rise to successively greater heights.
At last, on November 21, all is considered ready. Four hands will be needed to stoke the fire with bundles of straw. Pilâtre is joined by a fellow passenger, the marquis d'Arlandes.
An excited crowd attempts to follow the path of the balloon as it rises and drifts away across Paris. In spite of alarming moments (such as their basket catching fire), the aeronauts make a successful flight, travelling about six miles in twenty-five minutes. They land safely, narrowly missing a windmill.
Those who have followed on horses are immediately on the scene. In the excitement Pilâtre's jacket, which he has taken off in the heat of the work, is torn to shreds and distributed as souvenirs. History has its first aviators.
Year of the balloon - hydrogen: 1783
News of the astonishing event at Annonay, in June 1783, prompts a Parisian physicist, Jacques Alexandre César Charles, to take serious steps to harness the property of hydrogen. He commissions from a silk merchant a balloon with a diameter of about 13 feet, and has it varnished with a gum solution.
To provide enough hydrogen Charles acquires 500 lb. of sulphuric acid and 1000 lb. of iron filings. The resulting gas is passed for four days through lead pipes into the slowly inflating balloon. At last, on August 27, a cannon is fired to signal the launch. The balloon rises rapidly to about 3000 feet in front of an ecstatic crowd on the Champ de Mars.
The contraption travels fifteen miles in forty-five minutes before springing a leak and crashing to the ground near a village. The first peasants on the scene, alarmed at the arrival of this monster from the sky, take the precaution of beating it until it seems undeniably dead.
Just as the hydrogen balloon is behind the hot-air version in the first ascent of any kind, so it is in the first manned ascent - but only by a very small margin. On December 1, ten days after the achievement of Pilâtre de Rozier, Charles and a colleague rise into the air from the circular pond in front of the Tuileries. After a trouble-free journey of more than two hours, the aeronauts land about twenty-seven miles from Paris.
Charles's balloon, as befits that of a scientist, is more controllable than the Montgolfier version. It has a valve to release gas and descend, and it carries ballast which can be thrown overboard to rise again. The basket to carry the aeronauts is now a sturdy construction, looking like a small ship or gondola. And there is a barometer on board to measure altitude.
After the first landing, Charles takes off alone for a second flight. The barometer reveals that with the lighter load the balloon reaches the impressive height of about 10,000 feet, or two miles.
The hydrogen balloon soon prevails over the hot-air variety, because of its greater sophistication in an age when heat depends on burning bales of straw. Magnificent feats are achieved, beginning with a flight in 1785 across the English Channel by Jean Pierre Blanchard and an American doctor, John Jeffries. They throw out every loose item in the gondola, including their own clothes, to stay aloft long enough to arrive naked in France.
Impressive though these adventures are, the basic problem remains that there is no way of guiding a balloon.
Mail coach: 1784 - 1797
Benefits in both communication and travel derive from an initiative of John Palmer in 1782. As owner of a theatre in Bath, he is struck by the fact that letters to and from London often take three days on the journey - because the royal mail employs for the purpose individual postboys on decrepit horses.
Palmer proposes to the government a more ambitious scheme, by which the mail is to be carried in special coaches with good horses, armed guards, and no outside passengers. There is strong opposition from the post office, but the young William Pitt gives Palmer his personal support. As chancellor of the exchequer, he is attracted by the idea of higher postal charges for a better service.
The first mail coach runs from Bristol to London in 1784. It is so successful that by the autumn of the following year Palmer has launched services to sixteen other towns including Liverpool, Manchester, Leeds, Norwich, Dover, Portsmouth, Hereford, Swansea and Holyhead. Edinburgh is added in 1786. By 1797 there are forty-two routes in operation.
The departure of the mail coaches becomes a famous event every evening in London, for they all leave together at 8 p.m. Average speeds are now up to nearly 10 m.p.h. Edinburgh is reached in 43 hours, meaning that an answer can be received in London within four days.
The roads of Telford and McAdam: 1803-1815
Improvement in the speed of coaches, seen in Britain with the introduction of the mail coach in 1784, is accompanied by similar advances in road technology. Travel in horse-drawn vehicles becomes increasingly sophisticated during a period of about fifty years, until the success of the railways results once again in roads being neglected. The early decades of the 19th century are the great days of coaching, commemorated in many paintings and prints.
Clear evidence of this new priority is the government's appointment of Thomas Telford in 1803 to undertake extensive public works in his native Scotland.
Telford constructs more than 900 miles of road in Scotland, together with 120 bridges, before transferring his attention to the important route along the north coast of Wales (leading to Anglesey and the shipping lanes to Ireland). With justification Robert Southey describes Telford as the Colossus of Roads.
Meanwhile another Scot, John McAdam, has been making great improvements in the surface quality of the new roads. He devises a system, first put into practice in the Bristol region in 1815, for improving the durability of a carriage way.
A McAdam road is well drained and is raised slightly above ground level. McAdam achieves this by laying three successive layers of graded stones, with the largest ones at the bottom. Each layer is compacted by a very simple method. The road is opened to traffic for several weeks, until the metal-rimmed wheels of carriages and carts have compressed and levelled the stones sufficiently for the next layer, of a finer grade, to be added.
Roads made by this method come to be known all over the world as macadamized. When tar is added to bind the top layer, later in the 19th century, the result is the tar macadam road - and eventually the trade name 'tarmac'.
The National Road: 1811-1852
The settlement of the Ohio valley, and the admission of Ohio to the Union in 1803, prompts the construction of the USA's first great federal road project. In 1802 the government undertakes to link the Ohio valley with the Atlantic. Construction begins in 1811 at Cumberland in Maryland, which is already reached by a state road from Baltimore.
The new highway, known variously as the National Road or the Cumberland Road, is completed by 1818 as far as Wheeling on the Ohio river. It reaches Colombus, Ohio, in 1833 and stretches as far west as the Mississippi by 1852. The route survives still, as the trunk road US40.
Built with a compacted stone surface, to the new standards pioneered in Britain by McAdam, the National Road has an immediate effect on the economy of the frontier regions.
When the road reaches Wheeling, transportation times betweens the Ohio river and the eastern seaboard are halved. Grain, hemp and wool from the west now make their way easily to the rich eastern states where they find a ready market.
0 komentar:
Post a Comment
Thank you for your comments